Building a Flask Dashboard to Monitor Algorithmic Trading Bot - Part 4

Dive into building a Flask Dashboard to monitor your algorithmic trading bot and integrate Binance API for real-time trading. 

Step 1: Setting Up Flask for Dashboard Monitoring
 

 1. Install Flask

First, install Flask using pip:

pip install flask

 

2. Basic Flask App

Create a file app.py and start with a basic structure:

from flask import Flask, render_template
import alpaca_trade_api as tradeapi

# Alpaca API keys
ALPACA_API_KEY = 'your_alpaca_api_key'
ALPACA_SECRET_KEY = 'your_alpaca_secret_key'
BASE_URL = 'https://paper-api.alpaca.markets'

# Initialize Alpaca API
api = tradeapi.REST(ALPACA_API_KEY, ALPACA_SECRET_KEY, base_url=BASE_URL)

app = Flask(__name__)

@app.route('/')
def dashboard():
    account = api.get_account()
    equity = account.equity
    cash = account.cash
    return f"<h1>Account Equity: ${equity}</h1><h2>Available Cash: ${cash}</h2>"

if __name__ == '__main__':
    app.run(debug=True)


 

3. Run the App

Start the Flask server:

python app.py

Open http://127.0.0.1:5000/ in your browser to view the account details.
 

Step 2: Expanding with Binance API


1. Install python-binance

pip install python-binance

2. Fetch Data from Binance


Update the Flask app to include Binance integration:

from binance.client import Client

# Binance API keys
BINANCE_API_KEY = 'your_binance_api_key'
BINANCE_SECRET_KEY = 'your_binance_secret_key'

# Initialize Binance Client
binance_client = Client(BINANCE_API_KEY, BINANCE_SECRET_KEY)

@app.route('/binance')
def binance_dashboard():
    # Fetch account info
    account_info = binance_client.get_account()
    balances = account_info['balances']
    btc_balance = next(item for item in balances if item['asset'] == 'BTC')
    
    return f"<h1>BTC Balance: {btc_balance['free']}</h1>"


Visit /binance on your server to see your Binance BTC balance.
 

Step 3: Creating an Interactive Dashboard
 

1. Install Bootstrap for Styling

Use Bootstrap to enhance the UI. Add this to the dashboard() function:

@app.route('/')
def dashboard():
    account = api.get_account()
    equity = account.equity
    cash = account.cash

    return f"""
    <!DOCTYPE html>
    <html>
    <head>
        <title>Trading Dashboard</title>
        <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.2/css/bootstrap.min.css">
    </head>
    <body class="p-3">
        <h1 class="text-primary">Trading Dashboard</h1>
        <div class="card">
            <div class="card-body">
                <h3>Account Equity: ${equity}</h3>
                <h4>Available Cash: ${cash}</h4>
            </div>
        </div>
    </body>
    </html>
    """


2. Add Real-Time Updates

Use JavaScript to refresh data periodically:

<script>
    setInterval(() => {
        location.reload();
    }, 10000); // Refresh every 10 seconds
</script>


Step 4: Deploy the Dashboard
 

Deploy on Heroku

    Install Heroku CLI:

brew tap heroku/brew && brew install heroku

Create requirements.txt:

pip freeze > requirements.txt


Create a Procfile:

web: python app.py

Deploy:

heroku create
git push heroku main

Comments

Popular posts from this blog

Integrating PHP with Message Queues RabbitMQ Kafka

FastAPI and UVLoop: The Perfect Pair for Asynchronous API Development

Konfigurasi dan Instalasi PostgreSQL Secara Lengkap di Windows Linux dan MacOS