Python Algorithmic Trading Dashboard with LSTM Predictions - Part 5
Step 1: Finalizing the Project
Here’s what your project should now include:
Core Components:
Data Fetching: Pull historical and live data from Binance or Alpaca.
LSTM Model: Predict price trends.
Dashboard: Real-time visualizations with Dash.
Live Trading: Execute buy/sell orders based on predictions.
Authentication: Secure the dashboard.
Step 2: Secure Deployment
1. Prepare API Keys for Security
Avoid hardcoding API keys in your scripts. Use environment variables:
Install python-dotenv:
pip install python-dotenv
Create a .env file:
BINANCE_API_KEY=your_binance_api_key
BINANCE_SECRET_KEY=your_binance_secret_key
ALPACA_API_KEY=your_alpaca_api_key
ALPACA_SECRET_KEY=your_alpaca_secret_key
Load the keys in your script:
from dotenv import load_dotenv
import os
load_dotenv()
BINANCE_API_KEY = os.getenv('BINANCE_API_KEY')
BINANCE_SECRET_KEY = os.getenv('BINANCE_SECRET_KEY')
ALPACA_API_KEY = os.getenv('ALPACA_API_KEY')
ALPACA_SECRET_KEY = os.getenv('ALPACA_SECRET_KEY')
2. Dockerize the Project
Containerize the application for easy deployment.
Create a Dockerfile:
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt requirements.txt
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "app.py"]
Build and run the container:
docker build -t trading-dashboard .
docker run -p 5000:5000 trading-dashboard
Step 3: Deploy to the Cloud
Option 1: Deploy on AWS
Set up an EC2 Instance:
Launch an EC2 instance with a free-tier eligible AMI (e.g., Amazon Linux 2 or Ubuntu).
Install Docker:
sudo yum update -y
sudo yum install docker
sudo service docker start
Deploy the App:
SSH into your EC2 instance and clone your project repository.
Build and run the Docker container on EC2:
docker build -t trading-dashboard .
docker run -d -p 80:5000 trading-dashboard
Access Your App:
Open the EC2 instance's public IP in your browser.
Option 2: Deploy on Heroku
Install the Heroku CLI:
brew tap heroku/brew && brew install heroku
Push Your Project:
Create a Procfile:
web: python app.py
Deploy:
git init
heroku create
git add .
git commit -m "Initial commit"
git push heroku main
Secure Environment Variables:
Set environment variables on Heroku:
heroku config:set BINANCE_API_KEY=your_binance_api_key
heroku config:set BINANCE_SECRET_KEY=your_binance_secret_key
Step 4: Add Authentication
Use Flask-Login for User Authentication:
pip install flask-login
Basic Setup:
from flask_login import LoginManager, UserMixin, login_user, login_required, logout_user
login_manager = LoginManager()
login_manager.init_app(app)
class User(UserMixin):
pass
@login_manager.user_loader
def load_user(user_id):
return User()
@app.route('/login', methods=['GET', 'POST'])
def login():
# Add login form logic
return "Login Page"
Secure routes like:
@app.route('/secure-dashboard')
@login_required
def secure_dashboard():
return "Secure Trading Dashboard"
Step 5: Next Features to Consider ?
Push Notifications:
Use Twilio or email notifications to alert on trades.
Advanced Analytics:
Integrate Plotly for richer visualizations.
Risk Management:
Add stop-loss and position-sizing algorithms.
Hope this is helpful, and I apologize if there are any inaccuracies in the information provided.
Comments
Post a Comment